
Java Programming
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2021 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Chapter 6

 Static variables and methods

 Primitive Vs Reference Variables

 Stack Vs Heap Memory

 Memory Allocation: Primitive Types
 Memory Allocation: Reference Types

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 Now we will examine what is going on
behind the scenes when a variable is
declared.

 How does memory get allocated?

 Where do variables get stored?

 Primitive Vs. Reference Types revisited.

© 2021 Arthur Hoskey. All
rights reserved.

Memory

Stack

All local
variables and
parameters

Heap

Member
variables of
reference

types

Two types of Memory

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 When you declare a primitive type variable the
data gets stored in the variable itself (does not
store an address).

 int, short, long, float, double, byte, char are
initialized to 0.

 boolean is initialized to false.

Primitive Types:
1. int 2. short 3. long
4. float 5. double 6. byte
7. char 8. boolean

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 What happens when primitive variables
are declared in a method?

 For example: int id, salary;

Stack

0 (id : int)

0 (salary : int)

id is an int (4 bytes of space)

salary is an int (4 bytes of
space)

1000

1004

Memory
Location

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 What is a reference type?

 Something that is not a primitive type.

 Types defined using the keyword "class"
are reference types.

 Predefined classes stored in the Java
Standard Library. For example: String,
Scanner etc.

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 Now assume that we declared the
following class:
public class Student
{

private int id; // Primitive Instance Within Class
private int rank; // Primitive Instance Within Class

// Assume the proper Get, Set, and Constructors
// are declared

}

 There are two member variables in Student.

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 How do reference type variables get stored?

 Reference type variables "refer" to a location.

 The variable stores the address where the
member variables are located on the heap

 How is Student stored in memory?

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 Any class is a reference type. Now declare a
variable of type Student.

 Declare an instance of Student in a method:
Student s = new Student();

Stack

s

Heap

s:Student
0 (id)
0 (rank)

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 The number 21000 is a location in memory (an
address).

 21000 "refers" to the location in memory where
the s variable data is located.

Stack

21000 (s:Student)

Heap

s:Student
0 (id)
0 (rank)

1000

1004

Memory
Location

21000

21008

Memory
Location

1008

21004

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 Declare a variable in a method but do not call new.
Student s; // New is NOT called!
 The heap piece is NOT allocated until new is called!!!
 The constructor is NOT called for s!!!

Stack

null (sp:Student)

Heap

1000

1004

Memory
Location

21000

21008

Memory
Location

1008

21004

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 The heap piece is allocated the moment that new
is called!

 Student s;
s = new Student(); // Call new

Stack

21000 (s:Student)

Heap

1000

1004

Memory
Location

21000

21008

Memory
Location

1008

21004

s:Student
0 (id)
0 (rank)

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 new allocates memory on the heap.

 If new is not called, then the value of the
variable is null.

 If a reference variable has the value
null it cannot be used!

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 Now look at primitive values again.
 What does memory look like after declaring

primitive variables in a method?
int num1=44, num2=99;
num1 = num2; // Assignment

Stack

44 (int:num1)

99 (int:num2)

num1 is an int (4 bytes of space)

num2 is an int (4 bytes of space)

1000

1004

Memory
Location

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 The variable num1 is assigned the value
stored in num2.

 99 is copied into num1.
int num1=44, num2=99;
num1 = num2; // Assignment

Stack

99 (int:num1)

99 (int:num2)

num1 is an int (4 bytes of space)

num2 is an int (4 bytes of space)

1000

1004

Memory
Location

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 When you assign one variable to another
you copy whatever value is inside it and
put it into the other variable.

 99 is copied into num1 from num2.
int num1=44, num2=99;
num1 = num2; // Assignment

99

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 Now declare two Student type variables in
a method.

 For example:
Student s1;
Student s2;

 What does memory look like?

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 new was NOT called so no memory on heap.

Stack

null (s1:Student)

Heap

1000

1004

Memory
Location

21000

21008

Memory
Location

1008

21004null (s2:Student)

21012

21016

1012

1016

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 Now declare two Student type variables.

 This time new is called for each.

 For example:
Student s1 = new Student(100, 1);
Student s2 = new Student(200, 50);

 What does memory look like?

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 s1 and s2 have different addresses.

Stack

21000 (s1:Student)

Heap

1000

1004

Memory
Location

21000

21008

Memory
Location

1008

21004

s2:Student
200 (id)
50 (rank)

s1:Student
100 (id)

1 (rank)21008 (s2:Student)

21012

21016

1012

1016

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 What happens when you assign one
reference to another?

 For example:
Student s1 = new Student(100, 1);
Student s2 = new Student(200, 50);

s1 = s2; // Assignment

 What does memory look like?

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 s1 has the same ADDRESS as s2

Stack

21008 (s1:Student)

Heap

1000

1004

Memory
Location

21000

21008

Memory
Location

1008

21004

s2:Student
200 (id)
50 (rank)

s1:Student
100 (id)

1 (rank)21008 (s2:Student)

21012

21016

1012

1016

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 Code:
Student s1 = new Student(100, 1);
Student s2 = new Student(200, 50);
s1 = s2; // Assignment

 s1 and s2 now point to the SAME memory
location in the heap.

 Any change you make to either one will
effect the other.

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 Memory location 21000 is now unreachable!!!

Stack

21008 (s1:Student)

Heap

1000

1004

Memory
Location

21000

21008

Memory
Location

1008

21004

s2:Student
200 (id)
50 (rank)

s1:Student
100 (id)

1 (rank)21008 (s2:Student)

21012

21016

1012

1016

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 Unreachable memory locations are a
waste of space and must be given back to
the system.

 Any memory locations on the heap that
are not “referenced” will be given back to
the system.

 This is called "garbage collection".

© 2021 Arthur Hoskey. All
rights reserved.

In-Class Problem

 Do in-class problem for ch 6 p1.

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 Define a class that contains another class.
public class School {

int dist;
Student s1; // Previously defined
Student s2; // Previously defined

public School(int newDist, int id1, rank1, id2, rank2)
{

dist = newDist;
s1 = new Student(id1, rank1);
s2 = new Student(id2, rank2);

}
// Assume Get/Set and main defined

};

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 Create an instance of the School type but
do not call new:

public static void main(String[] args)
{

School sch;
}

 What does the variable sch look like
in memory?

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 No memory allocated on the heap!

Stack

null (sch:School)

Heap

1000

1004

Memory
Location

21000

21008

Memory
Location

1008

21004

21012

21016

1012

1016

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 Create an instance of the school class and
call new on it:

public static void main(String[] args)
{

School sch;
sch = new School(7, 100, 1, 200, 50);

}
 What does the variable sch look like

in memory?

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 School AND two Student instances on heap.

Stack

21000 (sch:School)

Heap

1000

1004

Memory
Location

21000

Memory
Location

1008

21004

21012

1012

1016 s2:Student
200 (id)
50 (rank)

s1:Student
100 (id)

1 (rank)

sch:School
7 (dist)

(s1)
(s2) 21008

21016

21020

210241020

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 s1 and s2 members of School are references!

Stack

21000 (sch:School)

Heap

1000

1004

Memory
Location

21000

Memory
Location

1008

21004

21012

1012

1016 s2:Student
200 (id)
50 (rank)

s1:Student
100 (id)

1 (rank)

sch:School
7 (dist)
21012 (s1)
21020 (s2) 21008

21016

21020

210241020

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 What if we did NOT call new for each
Student inside the School constructor?

 For example:

public School(int newDist, int id1, rank1, id2, rank2)
{

dist = newDist;

//s1 = new Student(id1, rank1); Don’t run this line
//s2 = new Student(id2, rank2); Don’t run this line

}

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 No place to store Student data!

Stack

21000 (sch:School)

Heap

1000

1004

Memory
Location

21000

Memory
Location

1008

21004

21012

1012

1016

sch:School
7 (dist)
null (s1)
null (s2) 21008

21016

21020

210241020

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 What if we called new on s1 but NOT s2?

 For example:

public School(int newDist, int id1, rank1, id2, rank2)
{

dist = newDist;

s1 = new Student(id1, rank1);

//s2 = new Student(id2, rank2); Don’t run this line
}

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 s1 is usable but s2 is not.

Stack

21000 (sch:School)

Heap

1000

1004

Memory
Location

21000

Memory
Location

1008

21004

21012

1012

1016

s1:Student
100 (id)

1 (rank)

sch:School
7 (dist)
21012 (s1)
null (s2) 21008

21016

21020

210241020

© 2021 Arthur Hoskey. All
rights reserved.

Strings

 Primitive types:
 int, short, long, float, double, byte, char,

and boolean.

 Is String a primitive or a reference type?

 Are the following declarations legal?
int num = 44;
String name = "Arthur";

© 2021 Arthur Hoskey. All
rights reserved.

Strings

 String is a reference type!

 If String is a reference type, then why
don’t you have to call new to use it?

 For example (this is legal Java code):
String name = "Arthur";

© 2021 Arthur Hoskey. All
rights reserved.

Strings

 String is a special reference type!
 Call to new is NOT required.

 Strings can be stored in two different areas of the heap:
◦ String Constant Pool
◦ Normal Heap Memory

 Where the string is stored depends on how it is initialized.

 Store in String Constant Pool:
String name = "Arthur";

 Store in Normal Heap Memory:
String name = new String("Arthur");

© 2021 Arthur Hoskey. All
rights reserved.

String Constant Pool

 String Constant Pool:
String s1 = "Arthur";

 The String Constant Pool stores all string constants.
 String constants in the pool are shared by all instances that

use it (no duplicates).

String s1 = "Arthur";
String s2 = "Arthur";

s1.equals(s2) – Returns true

s1 == s2 – Returns true (refer to same exact location)

© 2021 Arthur Hoskey. All
rights reserved.

String Constant Pool

 s1 and s2 share same string constant

Stack

21000 (s1)

Heap

1000

1004

Memory
Location

21000

Memory
Location

1008 21128

1012

1016

String Constant Pool
"Arthur"

1020

21000 (s2)

© 2021 Arthur Hoskey. All
rights reserved.

String Normal Heap Memory

 String Normal Heap Memory:
String s3 = new String("Aidan");

 Behaves like normal references type.
 String is NOT in the string constant pool.
 Actual strings are NOT shared by all instances.

String s3 = new String("Aidan");
String s4 = new String("Aidan");

s3.equals(s4) – Returns true

s3 == s4 – Returns false

There will
be two

copies of
"Aidan"

© 2021 Arthur Hoskey. All
rights reserved.

String Normal Heap Memory

 s3 and s4 are NOT in the string constant pool

Stack

21128 (s3)

Heap

1000

1004

Memory
Location

21000

Memory
Location

1008 21128

1012

1016

String Constant Pool

1020

21160 (s4)

21160

"Aidan"

"Aidan"

© 2021 Arthur Hoskey. All
rights reserved.

Strings Comparisons

String s1 = "Arthur"
String s2 = "Arthur"
String s3 = new String("Aidan");
String s4 = new String("Aidan");

Stack

21000 (s1)

Heap

1000

1004

Memory
Location

21000

Memory
Location

1008 21128

1012

String Constant Pool

"Arthur"21000 (s2)

21160

"Aidan"

"Aidan"21160 (s4)

21128 (s3)

s1.equals(s2) true
s3.equals(s4) true
s1==s2 true
s3==s4 false

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 Now another example…

 Both primitive and reference types are
included.

© 2021 Arthur Hoskey. All
rights reserved.

Memory

public class Employee {
int m_iId;
int m_iSalary;

public Employee(int id, int salary) {
m_iId = id;
m_iSalary = salary;

}

public static void main(String[] args) {
int num1 = 15; // Declare 3 variables
String name = new String("Arthur");
Employee emp;

}
};

What does
memory look like?

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 Did not call new on Employee.

Stack

15 (num1:int)

Heap

1000

1004

Memory
Location

Memory
Location

1008

name:String
"Arthur"

21000 (name: String)

1012

1016

null (emp:Employee)

21000

21128
21132
21136

© 2021 Arthur Hoskey. All
rights reserved.

Memory

public class Employee {
int m_iId;
int m_iSalary;

public Employee(int id, int salary) {
m_iId = id;
m_iSalary = salary;

}

public static void main(String[] args) {
int num1 = 15; // Declare 3 variables
String name = new String("Arthur");// AND call new
Employee emp = new Employee(10, 2000);

}
};

What does
memory look like?

© 2021 Arthur Hoskey. All
rights reserved.

Memory

 new is called for Employee.

Stack

15 (num1:int)

Heap

1000

1004

Memory
Location

21000

21128

Memory
Location

1008

name:String
"Arthur"

21000 (name: String)

21132
21136

1012

1016

21128(emp:Employee) emp:Employee
10 (int:m_iId)

2000 (int:m_iSalary)

© 2021 Arthur Hoskey. All
rights reserved.

Attendance

 Take attendance now!!!

© 2021 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2021 Arthur Hoskey. All
rights reserved.

